Applied Math Modeling (Python)
Applied Math Lab: course hub
Welcome! This site collects the notes, code, and datasets for the Applied Math Lab.
Note
Quick links:
Course at a glance
- Format: 10 live in-person sessions
- Tools: Python, NumPy, SciPy, matplotlib, Streamlit, NetworkX
- Main goal: learn modeling by building simulations you can explore and explain
How this repo/site is organized
- Modules (theory + guided notebooks/notes):
modules/ - Session code (classroom scripts and demos):
sessions/ - Streamlit app (interactive demos):
streamlit/ - Datasets used in network sessions:
data/
What you will build
Across the course you will implement and experiment with:
- ODE models (SIR, spruce budworm, Michaelis–Menten)
- Nonlinear oscillators (Van der Pol, FitzHugh–Nagumo)
- Reaction–diffusion PDEs (finite differences + animations)
- Collective behavior (Vicsek flocking + interaction)
- Networks (metrics, spreading processes, real datasets)
- Cellular automata (1D rules + traffic models)
Getting started locally
Create an environment
If you use Conda:
conda create --name amlab python=3.13
conda activate amlab
conda install --yes --file requirements.txtIf you prefer pip:
Windows (PowerShell):
python -m venv .venv
.\.venv\Scripts\Activate.ps1
pip install -r requirements.txtmacOS/Linux:
python -m venv .venv
source .venv/bin/activate
pip install -r requirements.txtRun the Streamlit app
streamlit run ./streamlit/home.pyWhere to go next
- Start with Session 1: ODEs in 1D
- Review the full schedule in the Syllabus